STABILITY OF AN ELASTOPLASTIC SPHERE UNDER EXTERNAL PRESSURE
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‘The stability of ideally plastic, elastoplastic, and reinforced elastoviscoplas-
tic bodies subjected to large subcritical strains was investigated in [1-4]. The
problems solved in these papers were related to the stability of systems in which
homogeneous stress and strain fields arise in the initial state. The stability of
an elastic thick-walled spherical shell subjected to external pressure leading to
large subcritical strains was investigated in [5]. The stability of an axisym~
metric sphere of elastoplastic material subjected to large plastic strains is
examined below.

The system of equations characterizing the behavior of an elastoplastic body subjected
to finite strains is taken in the same form as in [4].

For a sphere under external pressure q the relation between the geometric dimensions in
the subcritical state, with incompressibility taken into account, is similar to that used in

[5]: Q=20 a® = HB % Q(r)— TT" - [1 +d —?»)3(‘;—0>3]“3,
2 =1—Q% Zed=28=1-—0%
e =0; i, (1)
where a°, b°, r°, a, b, r are the dlmensions of the sphere, cavity, and arbitrary radius with-

in the body before and after deformarion; €4 J are components of the total strain tensor.

The amplitudes of the stresses ciJ and displacements wl in the spherical system of coor-
dinates (r, 6, ¢) are connected by the relarions [4]

i —gzajag Vau'oc (1 - gJ)Gth (Vsz T \71101) (2)
1 .
Qpj = (rki -5 ajrkn) Wi Iraml =lda ™ p=1—2¢j;
| ) Rl Ly s
3 1-4+% . 1 1 € 21 +F%) £ 1,
dhj=[2_E—c+Hh T ]g’]‘_*_(—E;_'TE:) ::{ - S— 3§—'§(1—2‘32)“§“Ec, (3)

E, = or/er, Ex = doI/ng; lJ"l*/<2E ﬁ-zliiﬁﬂ J,.ak =1 “'uk+1uk—;, where gll] are the metric
tensor components; eij is the strain temsor deviator; ey and o1 are the intensities of the
strain and stress tensors; E is Young's modulus; % is Poisson's ratio.

In the case of an incompressible material (g"é"’1 = 1) we have the following relation for
the increments:
Vew'® = 0. ' )

We can then put the relation between the stress and displacement variations in the form
o = ggaiagaaVaw:z +(1 — ﬁ)aijg“ (Viw; + vw;) + &b’
-_— - 1 - -— - — . —
apj = (rhi -5 rkm) My ”rzn” = “dzn“ 1; by = rkmBm; (5)

wherep' is the hydrostatic pressure.
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Since problem (1) is axisymmetric, we find from (3) that

Qyo = gz} Ggy = Ggg; Ggy = A3} gy = dag; Gy = Gis;

Gy = Gy = Gyy = Gyg; 2Ggy = 53 — asﬁgz =773- (6)
Equalities (6) are valid of they are regarded as having a negative sign.

Substituting relations (2) in the equilibrium equation [5] for the disturbances, we
a¥rive at a system of three second-order differential equations in the displacements w; = u,
1
Wz = V, Wa = W;

1 ‘ :
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Fogr®u 1o+ Lyru g+ F o0 go— F oy tg 0 ¢ + GoyrPw . +-
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+Gﬂm%7wwwa“ww7lh%,,Gﬂwewe—ZQw—rpw (9

Ly=ray,:+2(ay + a1 — a5 +0); Ly=ragpp, —(2G,; +a,, +
T @39 + 20); Ly =T1Gyy,, + Gy — Go1 + 0; L4’:—_L3"{“2G21+
gy + Ggg; Ly = Ly 4 F1y+ Gro; Fiy=0a;;+ Gy +0i—0j; 0= 01— ab. (10)

In the case of an incompressible material we obtain in a similar way from (4) and (5)
a system for four differential equations for the unknowns u, v, w, and p. The form of the
three differential equilibrium equations is similar to (7)- (10) if we replace ajj in them by
alJ, Gij by ClJ and add to the left-hand side of (7)-(9), respectively, the terms

b17"2P,‘f+[2(b1_b2)r+r2b1,r]l’,§ bzrzp,g‘, barzpiq,,
and the fourth equation (incompressibility condition) has the form
ru,, + v, + (1 cos®)w o + 2Zru — tg v = 0,
The boundary conditions are written in the form
=0 for r=a; b (k=1,2,3). (11)

For simplification we consider a static formulation of the problem. We regard the state
corresponding to loss of stability as a state for which problem (7)-(9), (11) has anontrivial,
as well as a trivial, solution.

We seek a solution of Egs. (7)~(9), (11) in the form of a series of spherical functiomns
Yn'(e (F)'
J ] ]

oc (o] o0 oc D
u= 2 B A0 Y00 v= 2 2B () g5 Vas (0, 0);

o oo D w (12)
w= n§,7 §§1 an (T) ',Tq) Ynj (e* (F)v p/ = n§j j; Dnj (7‘) Ynj (61 (P)

From Eqs. (8) and (9), using (12), we can establish, as in [5], the equalities Bpj(r) =
Cnj (r). This is also true when ajj is replaced by aIJ and Gij by G1J The boundary-value
problem can be written in terms of the functions An Bpjs and Dpy. From the system of equa~
tions (7)-(9) we obtain two second-order dlfferentlal equations for functions Apj and Bpj
(the subscripts n and j are dropped):

ayr®4, .. + LirA,, + 2L, — NGy)A — NFyrB,,-— NL,B = 0; , (13)
F217‘2A,,- + L4TA + 0217‘23,”. + L3TB,,. - (2L3 + Na22)B = Oy (14)
: N =n-+n?

with boundary conditions
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ayr*A, . + 2a,rA + NagB = 0;rA +rB =0 for r = qa; b. (15)

For a compressible material, eliminating functions an and Dpj, we arrive at a fourth~
order differential equation for the function Anj(r),

4 .
¥ r il pa—o, (16)
s drt
where
Pi=w;+ B +v:(i=0,...,4); B,=Dbas B,=Dbas;
Bi=b,(alr+aiy)(i=1,23); = =al [51,1-“1‘ (& —52)]

<0

(i=0,...,4);
Ys=7V:1=0; y5=—N(ay —Fp); .= ~N%(E1 —L,— 47'12);
Vo= (N —2) 512%; a =0; af = rib3 'Gyy;
ab =71 (Ly+ 6G,)/bs;
al =[N (Fyy — ay,) + 2L, + 6G17by;  ah = Ly (N — 2)/b,,

and boundary conditions of the form

riA b 2rd A+ (N~ 2 A=0, &y + a4, + (a} s ) A,+ad=0. a7
1

Thus, the problem of determining the critical strain was reduced to the solution of two
second-order differential equations (13) and (14) with boundary conditioms (15), and in cases
of compressible and incompressible materials to the solution of the differential equation
(16) with boundary conditions (17). These boundary-value problems are eigenvalue problems.
The coefficients of the differential equations depend on the parameters of the medium, de-
sign, value of n, and the strain, For fixed values of the parameters and the number n the
solution of the problem will give the required value of the critical strain.

The problem was treated numerically for an incompressible material. We used the method
of finite differences in the calculations.

As Fig. 1 indicates, for a solid sphere (bo + 0) there is no loss of stability, which is
consistent with general physical ideas. When bo= o (in the case of a plastic spherical film)
a loss of stability is possible at minimum strains. The calculations were made for of =
chG_1 = —2;0 — 3, where op is the yield stress, G is the shear modulus, and different values
of co = ¢G™', where ¢ is the reinforcement coefficient. The relation between oy and ey was
selected in the form oy = o + cej.

Figure 2 shows the critical strain A as a function of the reinforcement coefficient co
for different yield stresses 03 = —2;0 — 3 and p°® = b°/a° = 0.5. It is obvious that n = 2
corresponds to the minimum value of the critical strain (and, hence, force), at which loss of
stability occurs. :
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MAXIMUM STABILITY FORMULAS FOR REINFORCED CYLINDRICAL SHELLS UNDER
EXTERNAL PRESSURE

V. M, Pavlov and L, I. Shkutin UDC 539.4.012.1

The problem of determining the reinforcement structure that maximizes the stabil-
ity of a cylindrical shell subjected to external pressure was formulated in [11],
where a numerical solution was obtained for a particular class of structures on
the basis of a formula for the stability limit of a hinged anisotropic circular
cylindrical shell of medium length in the membrane state. In the present article
the stability limit is determined more accurately, without any constraint on the
length of the shell, and the optimization is carried out over a broader class of
structures.

§1. Let us consider a circular cylindrical shell of comstant thickness H, mean radius R,
and length L, made of fibrous composite material. It is assumed that the material has a regu-
lar layered structure, so that it is possible to distinguish a typical layer whose thickness
is small as compared with that of the shell; the typical layer has multidirectional reinforce—
ment symmetrical with respect to an arbitrary axial section of the shell; the fibers in all
directions are made of the same linear-elastic material; the matrix material is linear-elas-
tic and isotropic.

In order to describe the state of stress and strain of the typical layer, we will em-
ploy the mechanical model proposed in [2]. Under the assumptions formulated above, this model
substitutes for an element of the reinforced layer the statically equivalent element of an
orthotropic-elastic homogeneous layer whose state of stress and strain is determined in the
principal surface coordinate system by the symmetric plane tensors of the average stresses
047 and strains €;; (the subscripts i, j run through the values 1, 2). The equations of [2]
for the relationship between the components of these tensors, simplified in accordance with
the starting assumptions, take the form

o = 0B(ayey + a181), 01y = 0Eage;,, 12 2; (1.1)
L 4
S B2 o Dy o 2
Q13 =& 2 @ Kibs 12 T=E8Vy 2 o XEXZRs 122, (1.2
h=1 h=1
K K
_ ) B 2,2 N\
433—3(1“‘0)*5-223 AinXar, 0,20, 0= 2 o,<1,
h=1 R=1

e=(1—)E/(1 —v})Bo>0, 0<v,<1/2,

where Eo and E are the moduli of elasticity of the matrix and the fibers, respectively; vo is
the Poisson ratio of the matrix; wp(k =1, 2, ..., K) is the volume fraction of fibers of
direction k (K is the total number of directions); w is the volume fraction of reinforcement;
Xik are the direction cosines of the k-th direction with respect to the i-th coordinate line.
For shell strains satisfying the Kirchhoff kinematic hypotheses we can write
€;j = Pij -+ 8q:

where pij; qij are the symmetric tensors of the tangential and bending strains of the middle
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