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The  stability of ideally plastic, elastoplastic, and reinforced elastoviscoplas- 
tic bodies subjected to large subcritical strains was investigated in [1-4]. The 
problems solved in these papers were related to the stability of systems in which 
homogeneous stress and strain fields arise in the initial state. The stability of 
an elastic thick-walled spherical shell subjected to external pressure leading to 
large subcritical strains was investigated in [5]. The stability of an axisym- 
metric sphere of elastoplastic material subjected to large plastic strains is 
examined below. 

The system of equations characterizing the behavior of an elastoplastic body subjected 
to finite strains is taken in the same form as in [4]. 

For a sphere under external pressure q the relation between the geometric dimensions in 
the subcritical state, with incompressibility taken into account, is similar to that used in 
[5]: 

. . . . . .  [ ~ ~(~f)~]~/3 a )o; a ~ a : ~ = b  ~ b3; Q( r )  rO t + ( t - -  ) 

~j = O; ~ ~ j ,  ( 1 )  

where  a ~  b ~  r ~  a ,  b ,  r a r e  t h e  d i m e n s i o n s  o f  t h e  s p h e r e ,  c a v i t y ,  and a r b i t r a r y  r a d i u s  w i t h -  
i n  the  body  b e f o r e  and a f t e r  d e f o r m a t i o n ;  { i  j a r e  components  o f  t he  t o t a l  s t r a i n  t e n s o r .  

The a m p l i t u d e s  o f  t h e  s t r e s s e s  o i  j and d i s p l a c e m e n t s  m i i n  the  s p h e r i c a l  s y s t e m  o f  c o o r -  
d i n a t e s  ( r ,  8,  r  a r e  c o n n e c t e d  by t h e  r e l a t i o n s  [4]  

---- g j )  G f i g  ~ (V,Wd + Vflt,~); (2) 
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Ec = el/el, Ek = dOl/del; G~j----~i/(2~c-~ 2(l-~• = �9 E ~i ak I- ~k+*~k-1, where gij are the metric 

tensor components; ei3 is the strain tensor deviator; e I and a I are the intensities of the 
strain and stress tensors; E is Young's modulus; ~ is Poisson's ratio. 

In the case of an incompressible material (gO$_i = i) we have the following relation for 
the increments : 

Vkw'~ = 0. (4) 

We can then put the relation between the stress and displacement variations in the form 

+(I - )GjdJ + = m ; 

(5) 

~ - ~ (I~ l~:~q~ ( ) 

wherep' is the hydrostatic pressure. 
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Since problem (1) is axisymmetric, we find from (3) that 

ax~ = ax3; a22 = a83; az~ = aa~; a32 = a23; ~ 2  = G~8; 

E q u a l i t i e s  (6)  a r e  v a l i d  o f  t h e y  a r e  r e g a r d e d  a s  h a v i n g  a n e g a t i v e  s i g n .  

Substituting relations (2) in the equilibrium equation [5] for the disturbances, we 
arrive at a system of three second-order differential equations in the displacements w: = u, 

! ! 

W2 = V, W s = W~ 

al~r~u ~ + G,2u,oo --? ~ u ,~  ~- L~ru,~ -- G~ tg  0u,o ~ 2L~u w" 

+ Fl~V,To__F12tgOv, ____~L.~vo__ L~tgOv+cT.~oFxow,~ ~ _ ~ L = w ~  =r~gu; (7)  

t 
F,lr=u ~o q- L~ru.o + G=~r~v,~ + a=,~v,oo + ~ Gztv,~e + 

2 " 
-+: L3rv,~--amtgOv,o--(2L3 + 2 G ~ - - a ~  @a2.~tg20) v + e~s2oF~w,~o + ~ a ~ t g O w , ~ =  r~pv; (8) 

F2xr2u,~ + L4ru,~ + F23v,~o-- F.,~ tg  Ov,~ + G~lr~w,~ 

+ G21w,o o q- ~ a~3w,~ ~ -~- Larw~ -? G21 tg Ow,o -- 2Law = r29w; 

L1 = ratt,~ q- 2 (ax~ + a~2 -- a2~ -? (~); L~ = ra~2,~ -- (2G~ 2 + a ~  ,-+- 

+ a m & 2 o ) ;  L~ = rG2L~ + G~2 -- G.~ + (~; La = L~ @ 2Gz~ + 
~ ~ ~ - & 

(9) 

(lO) 

In the case of an incompressible material we obtain in a similar way from (4) and (5) 
a system for four differential equations for the unknowns u, v, w, and p. The form of the 
three differe_ntial equilibrium equations is similar to (7)-(10) if we replace aij in them by 
aij , Gij by Cij and add to the left-hand side of (7)-(9), respectively, the terms 

and the fourth equation (incompressibility condition) has the form 

r2U,r + V,o + ( t /cos20)w,~ + 2ru -- tg Ov = O. 

The boundary conditions are written in the form 

o~i=O for r = a ;  b (k=1,2,3). 

For simplification we consider a static formulation of the problem. 
corresponding to loss of stability as a state for which problem (7)-(9), 
as well as a trivial, solution. 

We seek a solution of Eqs. (7)-(9), (ii) in the form of a series of spherical functions 

Ynj (0, g)~ 
oo D y . ~  (0, q~); 

n=j j=l  n=Sj--t 
(12) 

w= ~=jj IC,ls(r) D-~ Yn](O,~); = 
= = ~=~ j = l  

( i i )  

We regard the state 
(ii) has a nontrivial, 

(8) and (9), using (12), we can establish, as in [5], the equalities Bnj(r) = From Eqs. 
Cnj(r). ~lis is also true when aij is replaced by aij and Gij by Gij. The boundary-value 
problem can be written in terms of the functions Anj, Bnj, and Dnj. From the system of equa- 
tions (7)-(9) we obtain two second-order differential equations for functions Anj and Bnj 
(the subscripts n and j are dropped): 

alar~"A,rr @ LlrA,r -+- (2L.~ -- NGm)A -- 2Vf l~rB,r -- NL2B = O; (13 )  

F21r2A,r q- LarA -+- G21r2B,Tr q- LsrB,T -- (2L3 + Na2~)B = 0, (14) 

N = n + n 2 

with boundary conditions 
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anr2A,~v + 2al2rA "-~ Na13B = O; rA + rB = 0 for r = a;  b. ( 1 5 )  

For a compressible material, eliminating functions Bnj and Dnj, we arrive at a fourth- 
order differential equation for the function Anj (r), 

h 

X Pi diA -'7 Po A : O, ( 1 6 )  
i =  I dr+" 

where 

I ~'i,,+ . . .  r . . . .  ~+ =-b, (a+r + a+_,) ( i= i, 2, 3); •  

( ~  = o ,  . . . ,  4 ) ;  

~S = ?g = 0; 7~----- -- N (all --El2); ?l = --N T -- 

= r + 6g O/L; 

and boundary conditions of the form 

( -) r2Arr+2rAr+CN--2)  A=O, a~Arr~+ataA,~r+ a l + N  -an-at '  A,~+a~A----O. ( 1 7 )  
, , , b l  

Thus, the problem of determining the critical strain was reduced to the solution of two 
second-order differential equations (13) and (14) with boundary conditions (15), and in cases 
of compressible and incompressible materials to the solution of the differential equation 
(16) with boundary conditions (17). These boundary-value problems are eigenvalue problems. 
The coefficients of the differential equations depend on the parameters of the medium, de- 
sign, value of n, and the strain. For fixed values of the parameters and the number n the 
solution of the problem will give the required value of the critical strain. 

The problem was treated numerically for an incompressible material. We used the method 
of finite differences in the calculations. 

As Fig. I indicates, for a solid sphere (bo § 0) there is no loss of stability, which is 
consistent with general physical ideas When bo = ao (in the case of a plastic spherical film) 
a loss of stability is possible at minimum strains. The calculations were made for ~ = 
OT G-I =--21e -- 3, where o T is the yield stress, G is the shear modulus, and different values 
of co = cG -I, where c is the reinforcement coefficient. The relation between ~ and e I was 
selected in the form o I = OT + cel- 

Figure 2 shows the critical strain % as a function of the reinforcement coefficient Co 
for different yield stresses o~ = --2,0 -- 3 and po = bO/aO = 0.5. It is obvious that n = 2 
corresponds to the minimum value of the critical strain (and, hence, force), at ~ich loss of 
stability occurs. 
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MAXIMUM STABILITY FO~S FOR REINFORCED CYLINDRICAL SHELLS UNDER 

EXTERNAL PRESSURE 

V. M, Pavlov and L. I. Shkutin UDC 539.4.012.1 

The problem of determining the reinforcement structure that maximizes the stabil- 
ity of a cylindrical shell subjected to external pressure was formulated in [i], 
where a numerical solution was obtained for a particular class of structures on 
the basis of a formula for the stability limit of a hinged anisotropic circular 
cylindrical shell of medium length in the membrane state. In the present article 
the stability limit is determined more accurately, without any constraint on the 
length of the shell, and the optimization is carried out over a broader class of 
structures. 

w Let us consider a circular cylindrical shell of constant thickness H, mean radius R, 
and length L, made of fibrous composite material. It is assumed than the material has a regu- 
lar layered structure, so that it is possible to distinguish a typical layer whose thickness 
is small as compared with that of the shell; the typical layer has multidirectional reinforce- 
merit symmetrical with respect to an arbitrary axial section of the shell; the fibers in all 
directions are made of the same linear-elastic material; the matrix material is linear-elas- 
tic and isotropic. 

In order to describe the state of stress and strain of the typical layer, we will em- 
ploy the mechanical model proposed in [2]. Under the assumptions formulated above, this model 
substitutes for an element of the reinforced layer the statically equivalent element of an 
orthotropic-elastic homogeneous layer whose state of stress and strain is determined in the 
principal surface coordinate system by the symmetric plane tensors of the average stresses 
fij and strains (the subscripts i, j run through the values i, 2). The equations of [2] 
or the relationshxp between the components of these tensors, simplified in accordance with 

the starting assumptions, take the form 

011 = (oE(a11~11 + al~elo.), o~12 = o)Ea~3sl~, I ~ 2; ( 1 . 1 )  
K K 

a ~  = e + ~ Zi'k, a ~  ---- ev o + -5-  X,hX2k, I ~__ 2, 
h=l h=l 

K K 

a83 = e (1 - -  Vo) + 2 "--5- ZrkZ2h, ~Oh ~ O, O) = O) h < I,  
k = l  h=l 

s =  ( t  - - o ) ] E 0 / ( l - - v ~ ) E ~ o > O ,  0 ~ < % ~ < 1 / 2 ,  

where Eo and E are the moduli of elasticity of the matrix and the fibers, respectively; vo is 
the Poisson ratio of the matrix; ~k(k = l, 2 ..... K) is the volume fraction of fibers of 
direction k (K is the total number of directions); m is the volume fraction of reinforcement; 
Xik are the direction cosines of the k-th direction with respect to the i-th coordinate line. 

For shell strains satisfying the Kirchhoff kinematic hypotheses we can write 

ei i  ~" P i i  -+- ~qii, 

where Pij, qij are the symmetric tensors of the tangential and bending strains of the middle 
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